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Motivation

1. Need to fit non-linear functions.

2. Map data using a non-linear function. Then, perform a

linear regression on the resulting “features”.

3. We have a problem — number of features explodes.
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Solution — the “kernel trick”

1. “Only compute what you need”

2. Let φ(xi) be the feature expansion. Don’t compute φ(xi)
for every data point. Instead, find a shortcut to compute

φ(xi)
>φ(xj) for every pair (xi, xj).

3. (x, y) 7→ φ(x)>φ(y) is called a kernel

4. The matrixKij = φ(xi)
>φ(xj) generated from all the data is

called a kernel matrix, also referred to as a “Gram” matrix.
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Example — kernelizing absolute value loss (1)

• arg min
w

1
n

n∑
i=1

|w>xi − yi|+ λ‖w‖22

• Let w =
∑n

i=1 αixi

• Rewrite in terms of ~α:

w>xi =

(
n∑

j=1

αjxj

)>

xi =
n∑

j=1

αjx
>
j xi (1)

And,
‖w‖22 = w>w =

n∑
i=1

n∑
j=1

αiαjx
>
i xj (2)
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Example — kernelizing absolute value loss (2)

• Putting this together,

arg min
w

1

n

n∑
i=1

|w>xi − yi|+ λ‖w‖22 (3)

=
1

n

n∑
i=1

∣∣∣∣∣
n∑

j=1

αjx
>
j xi − yi

∣∣∣∣∣+ λ
n∑

i=1

n∑
j=1

αiαjx
>
i xj (4)

• xi’s only appear within inner products! Let Kij := k(xi, xj)
for some kernel function k.

5



Example — kernelizing absolute value loss (3)

• ∑n
j=1 αjk(xj, xi)− yi = ~α>Ki − yi where [Ki]j := k(xj, xi)

• ∑n
i=1 |~α>Ki − yi| = ‖~α>K − ~y‖1

• Thus,

arg min
w

1

n

n∑
i=1

|w>xi − yi|+ λ‖w‖22 (5)

= arg min
~α

1

n
‖~α>K − ~y‖1 + λ~α>K~α (6)
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How to derive kernel formulation

1. Assume a linear kernel

2. Only consider solutions that are in the linear span of the

data: w∗ =
∑n

i=1 αixi.

3. Reformulate so that X only appears as X>X

4. Replace X>X with the kernel matrix K(X,X)ij = k(xi, xj),
also called the “Gram Matrix.”
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Kernel Methods in practice

1. Determine the type of problem you have (regression,

binary classification, multi-class classification, etc.)

2. Select an appropriate model (perceptron, SVM, etc.)

3. Construct a kernel

4. Repeat

8



Kernel methods in practice — “with great power
comes great responsibility”

Pros
1. Explicit control (and understanding) of the model.

2. Incorporate prior knowledge via kernel engineering.

Cons
1. Avoided large d (e.g. d = ∞), but now our solution is in Rn

— lots of research on this scaling problem

2. Kernels can be hard to design without thorough

understanding of the problem/dataset — lots of research

on this kernel design problem
9



Choose the right kernel

So you have decided to use some kernel-based method, say

SVM. How do you design a kernel?

• Sit and think very hard

• Combine known kernels (that other people have laborously
constructed) to suit your particular problem.
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Spectrum kernel for biological sequences
Let x, y be two bio sequences (e.g. GATAACA). Define,

k(x, y) =
∑
sk

#(x, sk)#(y, sk) (7)

where the sum is over all subsequences, sk of length k.

Caption
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Example fits

26

Combining kernels
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Properties of Kernels

Symmetry and positive semi-definiteness
A function k : X × X → R is a valid kernel if and only if it is
symmetric and positive semi-definite, that is,

1. k(x,x′) = k(x′,x)
2. Any of the following equivalent statements holds

2.1 The kernel matrix K computed on data X ⊂ X is positive
definite for all X , that is, v>Kv ≥ 0 ∀v ∈ Rn

2.2
∑

i

∑
j cicjk(xi,xj) ≥ 0 ∀X ⊂ X , ci, cj ∈ R
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Properties of Kernels

Inner product in Hilbert space (Mercer 1909)
A function k : X × X → R is a valid kernel if and only if there
exists a feature map φ : X → H into a Hilbert space H, such
that

k(x,x′) = φ(x)>φ(x′) ∀x,x′ ∈ X .
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Kernel composition rules

Sum rule
If k1 and k2 are valid kernels on X , then k1 + k2 is a valid kernel
on X .

Scaling rule
If λ > 0 and k is a valid kernel on X , then λk is a valid kernel on
X .

Product rule
If k1 and k2 are valid kernels on X , then k1k2 is a valid kernel on
X . If k1 is a valid kernel on X1 and k2 is a valid kernel on X2,

then k1k2 is a valid kernel on X1 ×X2.
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Proving kernel validity

1. Proving that a kernel is valid:
1.1 Prove symmetry (easy) and positive definiteness (usually harder)

1.2 Find an explicit feature map φ(x), such that k(x,x′) = φ(x)>φ(x′)
1.3 Derive the kernel from other valid ones using the composition

rules

2. Proving that a kernel is invalid:
2.1 Find a counterexample against symmetry (might be easy)

2.2 Find a counterexample against positive definiteness (might be

harder)

16



Exercises

For x,x′ ∈ Rd and k(x,x′) = (x>x′ + 1)2, show that k(·, ·) is a
valid kernel.
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Exercises

(x>x′ + 1)2 = (
d∑

i=1

xix
′
i + 1)2

= 1 + 2
∑
i

xix
′
i +
∑
i

∑
j

xixjx
′
ix

′
j

= 1 +
∑
i

(
√
2xi)(

√
2x′i) +

∑
i

∑
j

(xixj)(x
′
ix

′
j)

Thus k(x,x′) = φ(x)>φ(x′)with

φ(x) =
[
1,
√
2x1, . . . ,

√
2xd, x1x1, x1x2, . . . , x1xd, x2x1, . . . , xdxd

]>
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Exercises

For k̃(x,x′) = f(k(x,x′)), show that k̃(·, ·) is a valid kernel if
k(·, ·) is a valid kernel and f is a polynomial with non-negative
coefficients.
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Exercises

k̃(x,x′) = a1k(x,x′)e1 + a2k(x,x′)e2 + . . .

Proof:

• All the k(x,x′)ei are valid kernels by the product rule.

• Thus, all the aik(x,x′)ei are valid kernels by the scaling rule.

• Thus, k̃(x,x′) is a valid kernel by the sum rule.

20



Exercises

For k̃(x,x′) = f(x)k(x,x′)f(x′)with f : X → R, show that
k̃(·, ·) is a valid kernel if k(·, ·) is a valid kernel.
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Exercises

If k(·, ·) is a valid kernel, we can write it as k(x,x′) = φ(x)>φ(x′)
for some φ(x).
Thus

k̃(x,x′) = f(x)φ(x)>φ(x′)f(x′)

= (f(x)φ(x))>(f(x′)φ(x′)) .

With φ̃(x) = f(x)φ(x), we can write k̃(x,x′) = φ̃(x)>φ̃(x′),
which makes it a valid kernel.
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Exercises

For k̃(x,x′) = k(f(x), f(x′))with f : X → X , show that k̃(·, ·) is
a valid kernel if k(·, ·) is a valid kernel.
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Exercises
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Exercises

For the data set X = [(−3, 4), (1, 0)] and the feature map

φ(x) = [x1, x2, ‖x‖]>, compute the kernel matrix K.
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Exercises

φ((−3, 4)) = [−3, 4, 5]>

φ((1, 0)) = [1, 0, 1]>

φ((−3, 4))>φ((−3, 4)) = 50

φ((−3, 4))>φ((1, 0)) = 2

φ((1, 0))>φ((1, 0)) = 2

K =

[
50 2
2 2

]
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END OF PRESENTATION

BEGININNG OF Q&A
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