
Intro ML: Tutorial on Kernel
Methods

Gideon Dresdner,1 Vincent Fortuin 1

1ETH Zurich

1

Motivation

1. Need to fit non-linear functions.

2. Map data using a non-linear function. Then, perform a

linear regression on the resulting “features”.

3. We have a problem — number of features explodes.

2

Solution — the “kernel trick”

1. “Only compute what you need”

2. Let φ(xi) be the feature expansion. Don’t compute φ(xi)
for every data point. Instead, find a shortcut to compute

φ(xi)
>φ(xj) for every pair (xi, xj).

3. (x, y) 7→ φ(x)>φ(y) is called a kernel

4. The matrixKij = φ(xi)
>φ(xj) generated from all the data is

called a kernel matrix, also referred to as a “Gram” matrix.

3

Solution — the “kernel trick”

1. “Only compute what you need”

2. Let φ(xi) be the feature expansion. Don’t compute φ(xi)
for every data point. Instead, find a shortcut to compute

φ(xi)
>φ(xj) for every pair (xi, xj).

3. (x, y) 7→ φ(x)>φ(y) is called a kernel

4. The matrixKij = φ(xi)
>φ(xj) generated from all the data is

called a kernel matrix, also referred to as a “Gram” matrix.

3

Solution — the “kernel trick”

1. “Only compute what you need”

2. Let φ(xi) be the feature expansion. Don’t compute φ(xi)
for every data point. Instead, find a shortcut to compute

φ(xi)
>φ(xj) for every pair (xi, xj).

3. (x, y) 7→ φ(x)>φ(y) is called a kernel

4. The matrixKij = φ(xi)
>φ(xj) generated from all the data is

called a kernel matrix, also referred to as a “Gram” matrix.

3

Solution — the “kernel trick”

1. “Only compute what you need”

2. Let φ(xi) be the feature expansion. Don’t compute φ(xi)
for every data point. Instead, find a shortcut to compute

φ(xi)
>φ(xj) for every pair (xi, xj).

3. (x, y) 7→ φ(x)>φ(y) is called a kernel

4. The matrixKij = φ(xi)
>φ(xj) generated from all the data is

called a kernel matrix, also referred to as a “Gram” matrix.

3

Example — kernelizing absolute value loss (1)

• arg min
w

1
n

n∑
i=1

|w>xi − yi|+ λ‖w‖22

• Let w =
∑n

i=1 αixi

• Rewrite in terms of ~α:

w>xi =

(
n∑

j=1

αjxj

)>

xi =
n∑

j=1

αjx
>
j xi (1)

And,
‖w‖22 = w>w =

n∑
i=1

n∑
j=1

αiαjx
>
i xj (2)

4

Example — kernelizing absolute value loss (1)

• arg min
w

1
n

n∑
i=1

|w>xi − yi|+ λ‖w‖22

• Let w =
∑n

i=1 αixi

• Rewrite in terms of ~α:

w>xi =

(
n∑

j=1

αjxj

)>

xi =
n∑

j=1

αjx
>
j xi (1)

And,
‖w‖22 = w>w =

n∑
i=1

n∑
j=1

αiαjx
>
i xj (2)

4

Example — kernelizing absolute value loss (1)

• arg min
w

1
n

n∑
i=1

|w>xi − yi|+ λ‖w‖22

• Let w =
∑n

i=1 αixi

• Rewrite in terms of ~α:

w>xi =

(
n∑

j=1

αjxj

)>

xi =
n∑

j=1

αjx
>
j xi (1)

And,
‖w‖22 = w>w =

n∑
i=1

n∑
j=1

αiαjx
>
i xj (2)

4

Example — kernelizing absolute value loss (1)

• arg min
w

1
n

n∑
i=1

|w>xi − yi|+ λ‖w‖22

• Let w =
∑n

i=1 αixi

• Rewrite in terms of ~α:

w>xi =

(
n∑

j=1

αjxj

)>

xi =
n∑

j=1

αjx
>
j xi (1)

And,
‖w‖22 = w>w =

n∑
i=1

n∑
j=1

αiαjx
>
i xj (2)

4

Example — kernelizing absolute value loss (1)

• arg min
w

1
n

n∑
i=1

|w>xi − yi|+ λ‖w‖22

• Let w =
∑n

i=1 αixi

• Rewrite in terms of ~α:

w>xi =

(
n∑

j=1

αjxj

)>

xi =
n∑

j=1

αjx
>
j xi (1)

And,
‖w‖22 = w>w =

n∑
i=1

n∑
j=1

αiαjx
>
i xj (2)

4

Example — kernelizing absolute value loss (2)

• Putting this together,

arg min
w

1

n

n∑
i=1

|w>xi − yi|+ λ‖w‖22 (3)

=
1

n

n∑
i=1

∣∣∣∣∣
n∑

j=1

αjx
>
j xi − yi

∣∣∣∣∣+ λ
n∑

i=1

n∑
j=1

αiαjx
>
i xj (4)

• xi’s only appear within inner products! Let Kij := k(xi, xj)
for some kernel function k.

5

Example — kernelizing absolute value loss (3)

• ∑n
j=1 αjk(xj, xi)− yi = ~α>Ki − yi where [Ki]j := k(xj, xi)

• ∑n
i=1 |~α>Ki − yi| = ‖~α>K − ~y‖1

• Thus,

arg min
w

1

n

n∑
i=1

|w>xi − yi|+ λ‖w‖22 (5)

= arg min
~α

1

n
‖~α>K − ~y‖1 + λ~α>K~α (6)

6

How to derive kernel formulation

1. Assume a linear kernel

2. Only consider solutions that are in the linear span of the

data: w∗ =
∑n

i=1 αixi.

3. Reformulate so that X only appears as X>X

4. Replace X>X with the kernel matrix K(X,X)ij = k(xi, xj),
also called the “Gram Matrix.”

7

How to derive kernel formulation

1. Assume a linear kernel

2. Only consider solutions that are in the linear span of the

data: w∗ =
∑n

i=1 αixi.

3. Reformulate so that X only appears as X>X

4. Replace X>X with the kernel matrix K(X,X)ij = k(xi, xj),
also called the “Gram Matrix.”

7

How to derive kernel formulation

1. Assume a linear kernel

2. Only consider solutions that are in the linear span of the

data: w∗ =
∑n

i=1 αixi.

3. Reformulate so that X only appears as X>X

4. Replace X>X with the kernel matrix K(X,X)ij = k(xi, xj),
also called the “Gram Matrix.”

7

How to derive kernel formulation

1. Assume a linear kernel

2. Only consider solutions that are in the linear span of the

data: w∗ =
∑n

i=1 αixi.

3. Reformulate so that X only appears as X>X

4. Replace X>X with the kernel matrix K(X,X)ij = k(xi, xj),
also called the “Gram Matrix.”

7

Kernel Methods in practice

1. Determine the type of problem you have (regression,

binary classification, multi-class classification, etc.)

2. Select an appropriate model (perceptron, SVM, etc.)

3. Construct a kernel

4. Repeat

8

Kernel methods in practice — “with great power
comes great responsibility”

Pros
1. Explicit control (and understanding) of the model.

2. Incorporate prior knowledge via kernel engineering.

Cons
1. Avoided large d (e.g. d = ∞), but now our solution is in Rn

— lots of research on this scaling problem

2. Kernels can be hard to design without thorough

understanding of the problem/dataset — lots of research

on this kernel design problem
9

Choose the right kernel

So you have decided to use some kernel-based method, say

SVM. How do you design a kernel?

• Sit and think very hard

• Combine known kernels (that other people have laborously
constructed) to suit your particular problem.

10

Spectrum kernel for biological sequences
Let x, y be two bio sequences (e.g. GATAACA). Define,

k(x, y) =
∑
sk

#(x, sk)#(y, sk) (7)

where the sum is over all subsequences, sk of length k.

Caption

11

Example fits

26

Combining kernels

12

Properties of Kernels

Symmetry and positive semi-definiteness
A function k : X × X → R is a valid kernel if and only if it is
symmetric and positive semi-definite, that is,

1. k(x,x′) = k(x′,x)
2. Any of the following equivalent statements holds

2.1 The kernel matrix K computed on data X ⊂ X is positive
definite for all X , that is, v>Kv ≥ 0 ∀v ∈ Rn

2.2
∑

i

∑
j cicjk(xi,xj) ≥ 0 ∀X ⊂ X , ci, cj ∈ R

13

Properties of Kernels

Inner product in Hilbert space (Mercer 1909)
A function k : X × X → R is a valid kernel if and only if there
exists a feature map φ : X → H into a Hilbert space H, such
that

k(x,x′) = φ(x)>φ(x′) ∀x,x′ ∈ X .

14

Kernel composition rules

Sum rule
If k1 and k2 are valid kernels on X , then k1 + k2 is a valid kernel
on X .

Scaling rule
If λ > 0 and k is a valid kernel on X , then λk is a valid kernel on
X .

Product rule
If k1 and k2 are valid kernels on X , then k1k2 is a valid kernel on
X . If k1 is a valid kernel on X1 and k2 is a valid kernel on X2,

then k1k2 is a valid kernel on X1 ×X2.
15

Proving kernel validity

1. Proving that a kernel is valid:
1.1 Prove symmetry (easy) and positive definiteness (usually harder)

1.2 Find an explicit feature map φ(x), such that k(x,x′) = φ(x)>φ(x′)
1.3 Derive the kernel from other valid ones using the composition

rules

2. Proving that a kernel is invalid:
2.1 Find a counterexample against symmetry (might be easy)

2.2 Find a counterexample against positive definiteness (might be

harder)

16

Exercises

For x,x′ ∈ Rd and k(x,x′) = (x>x′ + 1)2, show that k(·, ·) is a
valid kernel.

17

Exercises

(x>x′ + 1)2 = (
d∑

i=1

xix
′
i + 1)2

= 1 + 2
∑
i

xix
′
i +
∑
i

∑
j

xixjx
′
ix

′
j

= 1 +
∑
i

(
√
2xi)(

√
2x′i) +

∑
i

∑
j

(xixj)(x
′
ix

′
j)

Thus k(x,x′) = φ(x)>φ(x′)with

φ(x) =
[
1,
√
2x1, . . . ,

√
2xd, x1x1, x1x2, . . . , x1xd, x2x1, . . . , xdxd

]>
18

Exercises

For k̃(x,x′) = f(k(x,x′)), show that k̃(·, ·) is a valid kernel if
k(·, ·) is a valid kernel and f is a polynomial with non-negative
coefficients.

19

Exercises

k̃(x,x′) = a1k(x,x′)e1 + a2k(x,x′)e2 + . . .

Proof:

• All the k(x,x′)ei are valid kernels by the product rule.

• Thus, all the aik(x,x′)ei are valid kernels by the scaling rule.

• Thus, k̃(x,x′) is a valid kernel by the sum rule.

20

Exercises

For k̃(x,x′) = f(x)k(x,x′)f(x′)with f : X → R, show that
k̃(·, ·) is a valid kernel if k(·, ·) is a valid kernel.

21

Exercises

If k(·, ·) is a valid kernel, we can write it as k(x,x′) = φ(x)>φ(x′)
for some φ(x).
Thus

k̃(x,x′) = f(x)φ(x)>φ(x′)f(x′)

= (f(x)φ(x))>(f(x′)φ(x′)) .

With φ̃(x) = f(x)φ(x), we can write k̃(x,x′) = φ̃(x)>φ̃(x′),
which makes it a valid kernel.

22

Exercises

For k̃(x,x′) = k(f(x), f(x′))with f : X → X , show that k̃(·, ·) is
a valid kernel if k(·, ·) is a valid kernel.

23

Exercises

If k(·, ·) is a valid kernel, we can write it as k(x,x′) = φ(x)>φ(x′)
for some φ(x).
Thus

k̃(x,x′) = φ(f(x))>φ(f(x′)) .

With φ̃(x) = φ(f(x)), we can write k̃(x,x′) = φ̃(x)>φ̃(x′), which
makes it a valid kernel.

24

Exercises

For the data set X = [(−3, 4), (1, 0)] and the feature map

φ(x) = [x1, x2, ‖x‖]>, compute the kernel matrix K.

25

Exercises

φ((−3, 4)) = [−3, 4, 5]>

φ((1, 0)) = [1, 0, 1]>

φ((−3, 4))>φ((−3, 4)) = 50

φ((−3, 4))>φ((1, 0)) = 2

φ((1, 0))>φ((1, 0)) = 2

K =

[
50 2
2 2

]
26

References

1. Convolutional kitchen sinks for transcription factor binding

site prediction. Morrow, Alyssa and Shankar, Vaishaal and

Petersohn, Devin and Joseph, Anthony and Recht,

Benjamin and Yosef, Nir, NeurIPS 2016.

27

https://arxiv.org/abs/1706.00125
https://arxiv.org/abs/1706.00125

END OF PRESENTATION

BEGININNG OF Q&A

28

